Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Phytopathology ; 114(3): 630-640, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457135

RESUMEN

Bursaphelenchus xylophilus, the pine wood nematode (PWN), is the causal agent of pine wilt disease (PWD), which causes enormous economic loss annually. According to our previous research, fomepizole, as a selective inhibitor of PWN alcohol dehydrogenase (ADH), has the potential to be a preferable lead compound for developing novel nematicides. However, the underlying molecular mechanism is still unclear. The result of molecular docking showed that the stronger interactions between fomepizole and PWN ADH at the active site of ADH were attributed to hydrogen bonds. Low-dose fomepizole had a substantial negative impact on the egg hatchability, development, oviposition, and lifespan of PWN. Transcriptome analysis indicated that 2,124 upregulated genes and 490 downregulated genes in fomepizole-treated PWN were obtained. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that fomepizole could be involved in controlling PWN vitality mainly by regulating key signaling pathways, such as the ribosome, hippo signaling pathway, and lysosome. Remarkably, the results of RNA interference indicated that the downregulated serine/threonine-protein phosphatase gene (stpp) could reduce the egg hatchability, development, oviposition, and lifespan of PWN, which was closely similar to the consequences of nematodes with low-dose fomepizole treatment. In addition, the silencing of stpp resulted in weakness of PWN pathogenicity, which indicated that stpp could be a potential drug target to control PWN.


Asunto(s)
Pinus , Tylenchida , Animales , Virulencia , Transcriptoma , Fomepizol , Xylophilus , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Pinus/genética , Fosfoproteínas Fosfatasas/genética , Treonina/genética , Serina/genética , Tylenchida/genética
2.
Carbohydr Res ; 538: 109080, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513464

RESUMEN

Polysaccharides have attracted immense attention as the largest source of bioactive compounds. Its bioavailability and bioactivity can be improved by utilizing degradation enzymes to reduce their molecular weight and viscosity. In this study, a 654 bp gene encoding xylanase was screened from the genome of Bacillus altitudinis JYY-02 and overexpressed in Escherichia coli Rosetta (DE3). The recombinant xylanase with a molecular weight of 27.98 kDa was purified (11.7-fold) using Ni-NTA affinity chromatography, with a 43.6% final yield. Through molecular docking, Glu, Arg, Tyr, and Trp were found to be the main amino acids involved in the interaction between xylanase and xylobiose. The effects of pH, temperature, metal ions, and substrates on xylanase activity were determined, and the results showed that the highest catalytic activity was displayed at pH 6.5, 50 °C temperature, with Cu2+ as an activator and xylan as the substrate. The Km (substrate concentration that yields a half-maximal velocity) and Vmax (maximum velocity) of recombinant xylanase were 6.876 mg/mL and 10984.183 µmol/mg∙pr/min, respectively. The recombinant xylanase was thermostable, with 85% and 39% of the enzymatic activity retained after 1 h at 60 °C and 1 h at 90 °C, respectively. The recombinant xylanase demonstrated a significant clarifying effect on fruit juices.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Endo-1,4-beta Xilanasas/metabolismo , Simulación del Acoplamiento Molecular , Polisacáridos , Bacillus/genética , Temperatura , Xilanos/química , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Clonación Molecular , Especificidad por Sustrato
3.
Nanomaterials (Basel) ; 13(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446516

RESUMEN

Polylactic acid (PLA) is a biodegradable polymer made from natural sources, and its electrospinning (e-spinning) nanofiber membrane doped with antibacterial ingredients is widely used in the field of medical dressings. In this research, 9 wt% of rosmarinic acid (RosA) and 0.04 wt% of graphite oxide (GO) with synergistic antibacterial activity were introduced into the e-spinning PLA precursor solution, and the obtained PLA nanofiber membrane showed good antibacterial properties and wound healing effects. At the same time, a nonionic amphiphilic polymer, polyethylene glycol (PEG), was also introduced into this system to improve the hydrophilicity of the e-spinning membrane for wound healing application. The morphological characterization showed the RosA/GO and PEG did not affect the e-spinning of PLA. The tests of mechanical performance and wettability demonstrated that PEG and RosA/GO incorporated in PLA have migrated easily to the surface of the fiber. The e-spun PLA/PEG/RosA/GO membrane showed good antibacterial activity and promoted initial wound healing quickly, which would be a promising application in wound dressing.

4.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241850

RESUMEN

Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a major pathogen of pine wilt disease (PWD), which is a devastating disease affecting pine trees. Eco-friendly plant-derived nematicides against PWN have been considered as promising alternatives to control PWD. In this study, the ethyl acetate extracts of Cnidium monnieri fruits and Angelica dahurica roots were confirmed to have significant nematicidal activity against PWN. Through bioassay-guided fractionations, eight nematicidal coumarins against PWN were separately isolated from the ethyl acetate extracts of C. monnieri fruits and A. dahurica roots, and they were identified to be osthol (Compound 1), xanthotoxin (Compound 2), cindimine (Compound 3), isopimpinellin (Compound 4), marmesin (Compound 5), isoimperatorin (Compound 6), imperatorin (Compound 7), and bergapten (Compound 8) by mass and nuclear magnetic resonance (NMR) spectral data analysis. Coumarins 1-8 were all determined to have inhibitory effects on the egg hatching, feeding ability, and reproduction of PWN. Moreover, all eight nematicidal coumarins could inhibit the acetylcholinesterase (AChE) and Ca2+ ATPase of PWN. Cindimine 3 from C. monnieri fruits showed the strongest nematicidal activity against PWN, with an LC50 value of 64 µM at 72 h, and the highest inhibitory effect on PWN vitality. In addition, bioassays on PWN pathogenicity demonstrated that the eight nematicidal coumarins could effectively relieve the wilt symptoms of black pine seedlings infected by PWN. The research identified several potent botanical nematicidal coumarins for use against PWN, which could contribute to the development of greener nematicides for PWD control.


Asunto(s)
Angelica , Nematodos , Pinus , Tylenchida , Animales , Cnidium , Xylophilus , Acetilcolinesterasa/farmacología , Frutas , Antinematodos/farmacología , Antinematodos/química , Cumarinas/farmacología , Enfermedades de las Plantas
5.
Microbiol Spectr ; 10(4): e0153522, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35863007

RESUMEN

Gardenia blue (GB) is a natural blue pigment widely used in textiles and the pharmaceutical industry. The geniposide in gardenia fruits can be hydrolyzed by ß-glucosidase to form genipin, which reacts with amino acids to produce GB. In this study, a bacterial strain which secreted thermostable ß-glucosidase (EC 3.2.1.21) was isolated from soil and identified as Bacillus altitudinis JYY-02. This strain could potentially be used for GB production from geniposide by fermentation. Optimal fermentation results were achieved at pH 6.5 or 8.0 at 45°C for 45 h with additional sucrose. To obtain a large amount of ß-glucosidase, the whole genome of B. altitudinis JYY-02 was sequenced and annotated; it is 3,727,518 bp long and contains 3,832 genes. The gene encoding ß-glucosidase (bgl) in B. altitudinis JYY-02 was screened from the genome and overexpressed in Escherichia coli BL21(DE3). The recombinant ß-glucosidase was purified by affinity chromatography on a Ni Sepharose 6 fast flow (FF) column. The optimal temperature, pH, and Km values for the recombinant ß-glucosidase were 60°C, pH 5.6, and 0.331 mM, respectively, when p-nitrophenyl-ß-d-glucopyranoside (pNPG) was used as the substrate. The recombinant ß-glucosidase catalyzed the deglycosylation reaction of geniposide, which was then used to produce GB. IMPORTANCE ß-Glucosidases are enzymes capable of hydrolyzing ß-glucosidic linkages present in saccharides and glycosides and have many agricultural and industrial applications. Although they are found in all domains of living organisms, commercial ß-glucosidases are still expensive, limiting their application in industry. In the present study, a thermostable ß-glucosidase-producing strain was obtained for GB production by fermentation, engineered bacteria were constructed for preparing recombinant ß-glucosidase, and a one-step method to purify the recombinant enzyme was established. A large amount of purified ß-glucosidase was easily obtained from the engineered bacteria for industrial applications such as GB production.


Asunto(s)
Bacillus , Gardenia , Bacillus/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Gardenia/genética , Gardenia/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , beta-Glucosidasa/química , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
6.
Front Plant Sci ; 13: 862594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712574

RESUMEN

Pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is considered a major threat to pine forests worldwide. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic compounds with sugars and play crucial roles in the detoxification and homeostatic processes in all living organisms. We investigated the molecular characteristics and biological functions of the gene UGT440A1 that encodes UGTs in B. xylophilus. The in situ hybridization results indicated that UGT440A1 is expressed in all developmental stages of B. xylophilus, particularly in the head, intestine, and hypodermis of the second-stage of juveniles (J2), third-stage of juveniles (J3) and fourth-stage of juveniles (J4) females and in almost the whole body of J4 males and adults. Recombinant UGT440A1 was observed mainly in the inclusion bodies, and the enzyme activity assay revealed that UGT440A1 could catalyze the glycosylation reaction of two types of flavonols (kaempferol and quercetin). RNA interference (RNAi) of UGT440A1 suppressed motility, feeding, and reproduction of B. xylophilus. Furthermore, UGT440A1 knockdown caused a delay in the development of PWD symptoms in the pine seedlings inoculated with the nematodes. These results suggest that UGT440A1 is involved in the pathogenic process of B. xylophilus and the information may facilitate a better understanding of the molecular mechanism of PWD.

7.
Mol Biochem Parasitol ; 248: 111460, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090954

RESUMEN

Pinewood releases ethanol and other volatile compounds after Bursaphelenchus xylophilus infection. In the current study, we examined the influence of different ethanol concentrations on B. xylophilus reproduction. Low-concentrations of ethanol (8.5, 17, and 34 mM) increased egg production in B. xylophilus, whereas higher-concentrations (156 and 312 mM) reduced egg production. Transcriptome analysis was conducted to explore the molecular response of a low concentration of ethanol on the nematodes. The results suggest that the nematodes use ethanol as an energy source, which may promote survival. Ethanol induced changes in the expression of genes involved in the biosynthesis and metabolism of fatty acids and amino acids. Furthermore, ethanol promoted the expression of detoxification-related, cell wall-degrading, and reproduction-related genes. Such responses might contribute to the pathogenicity of B. xylophilus.


Asunto(s)
Pinus , Rabdítidos , Animales , Etanol , Perfilación de la Expresión Génica , Transcriptoma , Xylophilus
8.
J Microbiol Methods ; 194: 106390, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34890757

RESUMEN

Lycopene is an orange-red carotenoid, which confers a visual phenotype to assess genetic transformation of microorganisms. In this study, the lycopene synthesis pathway was constructed in engineered Escherichia coli BL21 (DE3) by transforming plasmid pET-15b-crtBEI, wherein crtB, crtE, and crtI could be expressed under the control of the T7 promoter and lacO operator and lycopene could be accumulated in the engineered bacteria upon induction by lactose. A good linear relationship was observed between the lycopene content in engineered bacterial culture and lactose concentration in the range of 4-52 g/L; using this relation, the lactose concentration in milk could be determined. This method could be used to overcome several limitations of the high-performance liquid chromatography (HPLC) method for lactose detection, such as cumbersome sample preparation and expensive detection equipment. Moreover, this method required only a clean bench, shaker, and spectrophotometer for lactose analysis. Additionally, no significant difference was observed between this method and HPLC in terms of lactose measurement in milk, indicating that this method is reasonable and simple.


Asunto(s)
Lactosa , Leche , Animales , Carotenoides/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lactosa/metabolismo , Licopeno/metabolismo
9.
RSC Adv ; 11(11): 6212-6220, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35423135

RESUMEN

Bursaphelenchus xylophilus (B. xylophilus) is a dangerous plant pest which could result in Pine Wild Disease (PWD). To investigate the physiological activity of B. xylophilus and utilize the fluorescent properties of quantum dots, carbon quantum dots (CQDs) using glucose as precursor were synthesized through a hydrothermal reaction. The properties of the CQDs strongly depended on the reaction temperature and reaction time. The transcriptome analysis was implemented to study the molecular toxicology mechanism of CQDs on B. xylophilus. Based on the analysis results, it can be concluded that CQDs have the potential to stimulate the detoxification process and fatty acid degradation mechanism of B. xylophilus. Through observing the biodistribution of CQDs, lifespan, locomotion and egg-laying behavior of B. xylophilus, the intestine was the main target organ of the CQDs, and the CQDs could affect the locomotion and reproduction activities of B. xylophilus.

11.
PLoS One ; 15(7): e0235755, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32649709

RESUMEN

As a widespread phytoplankton species, the coccolithophore Gephyrocapsaoceanica has a significant impact on the global biogeochemical cycle through calcium carbonate precipitation and photosynthesis. As global change continues, marine phytoplankton will experience alterations in multiple parameters, including temperature, pH, CO2, and nitrogen sources, and the interactive effects of these variables should be examined to understand how marine organisms will respond to global change. Here, we show that the specific growth rate of G. oceanica is reduced by elevated CO2 (1000 µatm) in [Formula: see text]-grown cells, while it is increased by high CO2 in [Formula: see text]-grown ones. This difference was related to intracellular metabolic regulation, with decreased cellular particulate organic carbon and particulate organic nitrogen (PON) content in the [Formula: see text] and high CO2 condition compared to the low CO2 condition. In contrast, no significant difference was found between the high and low CO2 levels in [Formula: see text] cultures (p > 0.05). The temperature increase from 20°C to 25°C increased the PON production rate, and the enhancement was more prominent in [Formula: see text] cultures. Enhanced or inhibited particulate inorganic carbon production rate in cells supplied with [Formula: see text] relative to [Formula: see text] was observed, depending on the temperature and CO2 condition. These results suggest that a greater disruption of the organic carbon pump can be expected in response to the combined effects of increased [Formula: see text]/[Formula: see text] ratio, temperature, and CO2 level in the oceans of the future. Additional experiments conducted under nutrient limitation conditions are needed before we can extrapolate our findings to the global oceans.


Asunto(s)
Dióxido de Carbono/farmacología , Haptophyta/crecimiento & desarrollo , Nitrógeno/farmacología , Dióxido de Carbono/análisis , Haptophyta/efectos de los fármacos , Nitrógeno/análisis , Temperatura
12.
J Nematol ; 52: 1-14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185942

RESUMEN

Punicalagin showed significant nematotoxic activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, in the authors' previous research. The authors performed high-throughput transcriptomic sequencing of punicalagin-treated nematodes to generate clues for its nematotoxic mechanism of action. The authors identified 2,575 differentially expressed genes, 1,428 of which were up-regulated and 1,147 down-regulated. Based on a comprehensive functional in silico analysis, the authors speculate that PWN may respond to the stimulus of punicalagin through phagosome, endocytosis, peroxisome and MAPK signaling pathways. In addition, punicalagin could greatly affect PWN energy metabolism including oxidative phosphorylation. The genes encoding twitchin and a nematode cuticular collagen could be crucial regulation targets of punicalagin, which might contribute to its nematotoxic activity against PWN.Punicalagin showed significant nematotoxic activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, in the authors' previous research. The authors performed high-throughput transcriptomic sequencing of punicalagin-treated nematodes to generate clues for its nematotoxic mechanism of action. The authors identified 2,575 differentially expressed genes, 1,428 of which were up-regulated and 1,147 down-regulated. Based on a comprehensive functional in silico analysis, the authors speculate that PWN may respond to the stimulus of punicalagin through phagosome, endocytosis, peroxisome and MAPK signaling pathways. In addition, punicalagin could greatly affect PWN energy metabolism including oxidative phosphorylation. The genes encoding twitchin and a nematode cuticular collagen could be crucial regulation targets of punicalagin, which might contribute to its nematotoxic activity against PWN.

13.
J Nematol ; 50(4): 559-568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31094158

RESUMEN

The ethanol extracts from the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan was toxic against the pine wood nematode Bursaphelenchus xylophilus. The ethyl acetate-soluble fraction derived from this extract increased its potency with a mortality of 95.25% in 72 hr at 1.0 mg/mL. Four nematotoxic coumarins were obtained from the ethyl acetate extract by bioassay-guided isolation. These were identified as osthole 1, columbianadin 2, bergapten 3 and xanthotoxin 4 by mass and nuclear magnetic resonance spectral data analysis. The LC50 values against B. xylophilus in 72 hr were 489.17, 406.74, 430.08, and 435.66 µM, respectively. These compounds also altered the smooth morphology of the B. xylophilus exoskeleton to a rough and pitted appearance as visualized by electron microscopy. The coumarins 1-4 possessed significant acetylcholinesterase inhibitory activities but had negligible effects on amylase and cellulase. This research provides additional clues to the nematotoxic mechanism of coumarins against the pine wood nematode B. xylophilus. This work will assist in the development of coumarin nematicides with enhanced activity using molecular modifications of the core coumarin structure.The ethanol extracts from the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan was toxic against the pine wood nematode Bursaphelenchus xylophilus. The ethyl acetate-soluble fraction derived from this extract increased its potency with a mortality of 95.25% in 72 hr at 1.0 mg/mL. Four nematotoxic coumarins were obtained from the ethyl acetate extract by bioassay-guided isolation. These were identified as osthole 1, columbianadin 2, bergapten 3 and xanthotoxin 4 by mass and nuclear magnetic resonance spectral data analysis. The LC50 values against B. xylophilus in 72 hr were 489.17, 406.74, 430.08, and 435.66 µM, respectively. These compounds also altered the smooth morphology of the B. xylophilus exoskeleton to a rough and pitted appearance as visualized by electron microscopy. The coumarins 1-4 possessed significant acetylcholinesterase inhibitory activities but had negligible effects on amylase and cellulase. This research provides additional clues to the nematotoxic mechanism of coumarins against the pine wood nematode B. xylophilus. This work will assist in the development of coumarin nematicides with enhanced activity using molecular modifications of the core coumarin structure.

14.
Pestic Biochem Physiol ; 135: 64-68, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28043333

RESUMEN

The ethanol extract of Punica granatum L. rind was tested to show significant nematicidal activity against pine wood nematode. Three nematicidal compounds were obtained from the ethanol extract by bioassay-guided fractionation and identified as punicalagin 1, punicalin 2, and corilagin 3 by mass and nuclear magnetic resonance spectral data analysis. Punicalagin 1 was most active against PWN among the purified compounds with the LC50 value of 307.08µM in 72h. According to the enzyme assays in vitro, punicalagin 1 could inhibit the activity of acetylcholinesterase, amylase and cellulase from PWN with IC50 value of 0.60mM, 0.96mM and 1.24mM, respectively. The morphological structures of PWNs treated by punicalagin 1 were greatly changed. These physiological effects of punicalagin 1 on PWN may helpful to elucidate its nematicidal mechanism.


Asunto(s)
Antinematodos/toxicidad , Taninos Hidrolizables/toxicidad , Lythraceae , Extractos Vegetales/toxicidad , Tylenchida/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Amilasas/antagonistas & inhibidores , Animales , Antinematodos/química , Celulasa/antagonistas & inhibidores , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Glucósidos/análisis , Glucósidos/toxicidad , Taninos Hidrolizables/análisis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Extractos Vegetales/química , Tylenchida/enzimología , Tylenchida/ultraestructura
15.
Nat Prod Res ; 30(17): 1969-73, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26479900

RESUMEN

The ethanol extract of the Ficus carica L. leaves was tested to show strong nematicidal activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, causing 90.93% corrected mortality within 72 h at 1.0 mg/mL. From the ethyl acetate soluble fraction of the F. carica L. leaves extract, the main nematicidal constituents were obtained by bioassay-guided isolation and identified as linear furocoumarins bergapten (1) and psoralen (2) by mass and NMR spectral data analysis. Bergapten and psoralen had significant nematicidal activity against PWN with the LC50 values of 97.08 aKSnd 115.03  µ g/mL within 72 h, respectively. The two furocoumarins could inhibit the activities of amylase, cellulase and acetylcholinesterase (AchE) from PWN. The morphologies of PWNs changed much after they were treated by bergapten and psoralen. The physiological effects of bergapten and psoralen on PWN might provide helpful clues to elucidate their nematicidal mechanisms.


Asunto(s)
Antinematodos/farmacología , Ficus/química , Nematodos/efectos de los fármacos , 5-Metoxipsoraleno , Amilasas/antagonistas & inhibidores , Animales , Antinematodos/química , Antinematodos/aislamiento & purificación , Celulasa/antagonistas & inhibidores , Inhibidores de la Colinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Ficusina/aislamiento & purificación , Ficusina/farmacología , Furocumarinas/química , Furocumarinas/aislamiento & purificación , Furocumarinas/farmacología , Metoxaleno/análogos & derivados , Metoxaleno/aislamiento & purificación , Metoxaleno/farmacología , Hojas de la Planta/química , Tylenchida/efectos de los fármacos
16.
Acta Biochim Biophys Sin (Shanghai) ; 38(8): 543-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16894476

RESUMEN

The cDNA encoding a protease of Perinereis aibuhitensis Grube (PPA) was cloned. The deduced amino acid sequence analysis showed that the protein had 49% identity to the C-terminal amino acid 169-246 of serine protease of Heterodera glycines. Northern blotting analysis indicated that the cDNA could hybridize with mRNA of approximately 260 bases isolated from the marine earthworm. The cDNA was amplified by polymerase chain reaction and cloned into pMAL-p2 to construct expression vector pMAL-PPA. pMAL-PPA was introduced into Escherichia coli BL21(DE3) and overexpression of PPA fused with maltose binding protein was achieved by isopropyl-beta-D-thiogalactopyranoside induction. The fusion protein was purified by affinity chromatography on an amylose resin column and ion-exchange chromatography on a diethylaminoethyl-Sepharose 4B column. Rabbits were immunized with the purified protein and antiserum was prepared. The antibody could react with a protein of approximately 9 kDa extracted from the marine earthworm as shown by Western blotting analysis. The activity analysis of the recombinant PPA suggested that it was probably a plasminogen activator.


Asunto(s)
Activadores Plasminogénicos/genética , Activadores Plasminogénicos/metabolismo , Poliquetos/enzimología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Western Blotting , Caseínas/metabolismo , Clonación Molecular , ADN Complementario/aislamiento & purificación , Proteínas del Helminto/química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Activadores Plasminogénicos/química , Poliquetos/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Serina Endopeptidasas/química , Tylenchoidea/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...